If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=1-Y^2+6Y-9
We move all terms to the left:
-(1-Y^2+6Y-9)=0
We get rid of parentheses
Y^2-6Y-1+9=0
We add all the numbers together, and all the variables
Y^2-6Y+8=0
a = 1; b = -6; c = +8;
Δ = b2-4ac
Δ = -62-4·1·8
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2}{2*1}=\frac{4}{2} =2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2}{2*1}=\frac{8}{2} =4 $
| x^2+4x+125=0 | | 32-8x=7x | | 32-8x=7x=2 | | 9n-7=47 | | G(-x)=2x^2-2x+21 | | 2-8+3h=1 | | 2-8+3k=1 | | 7-3p^2=-2+6p | | 12-4p=-4+2p^2 | | 6(-4)+5y=32.00 | | 5x+3=2+9 | | -4.9x^2+6.84x+32=0 | | 4.9x^2+6.84x+32=0 | | 17p+5p^2=-6 | | 21q+11-3-q=17 | | (1/2x+4)+(1/3x+1)=180 | | 1/2x+4+(1/3x+1)=180 | | 1/2x+4=(1/3x+1)=180 | | 35p+6p^2=-25 | | 1/2+4=(1/3x+1)=180 | | -3.6x-1=-2.8x+7 | | 2(21-x)+2x=42 | | 15-(6-7)=-2+6k | | 2-3(4-x)=5(2-x)+x | | 3x(x-3)=27 | | (1/3x+8)+(3/4x-18)+(1/2x)=180 | | 5x/3=50 | | 6/7x-11/42=-1/7x-5/6 | | (1/3x+8)=(3/4x-18)=(1/2x) | | 8p+7-4+2p=20 | | 5(x+8)=29 | | 4x-17+(7x-12)=180 |